New Entry to γ -Butyrolactams by Free Radical Cyclization of N-Allyl- α -chloro- α -(methylthio)acetamides. Formal Total Synthesis of (±)-Pseudoheliotridane Hiroyuki ISHIBASHI, * Tatsunori SATO, Maki IRIE, Suzumi HARADA, and Masazumi IKEDA Kyoto Pharmaceutical University, Misasagi, Yamashina, Kyoto 607 Tributyltin hydride-azobisisobutyronitrile induced radical cyclization of N-allyl- α -chloro- α -(methylthio)acetamides afforded γ -butyrolactams. This method was applied to the formal total synthesis of (±)-pseudoheliotridane. Free radical cyclization is rapidly becoming an important synthetic method for cyclic compounds. $^{1,2)}$ Although a number of radical species capable of ring closure with unsaturated bonds have been discovered so far, the use of sulfur-substituted radicals has received little attention. $^{3)}$ Here, we wish to demonstrate the usefulness of the methylthio-substituted α -carbamoyl radical ($\underline{2}$) as an initiator for radical olefin cyclization which provides a new route to γ -butyrolactams. In a typical experiment, a mixture of tributyltin hydride $(\underline{n}-Bu_3SnH)$ (1.1 equiv.) and a catalytic quantity of azobisisobutyronitrile (AIBN) in benzene was injected over 30 min into a 0.06 M solution of the chloride $(\underline{1a})^4$) in refluxing benzene, and refluxing was continued for 2 h. Evaporation of the solvent followed by flash chromatography on silica gel (benzene:ethyl acetate=4:3) gave 1,4-dimethyl-3-methylthiopyrrolidin-2(1H)-one (3a) in 68% yield as a mixture of two stereoisomers (trans:cis=69:31) (vide infra) [δ (CDCl₃, 300 MHz) 1.15 (d, J=6.7 Hz, CMe for cis), 1.22 (d, J=6.8 Hz, CMe for trans), 2.23 (s, SMe for trans), 2.26 (s, SMe for cis), 2.87 (3H, s, NMe)], along with the reduction product (4a) (16%). This result is in sharp contrast to a similar treatment of the chloride (5) which gave only a 24% yield of the cyclized product (7)⁵) together with the reduction product (8) (39%). It is generally accepted that the stabilized radicals are less reactive than the less stabilized radicals in the olefin cyclizations. This is, <u>a</u>: R=Me, <u>b</u>: R=CH₂Ph, <u>c</u>: R=Ph Scheme 1. however, in conflict with our results, since the radical (2) flanked by a pair of capto-dative substituents⁶⁾ is expected to be more stable than the primary one $(\underline{6})$. Assignment of <u>trans</u>-stereochemistry for the major isomer of the cyclization product ($\underline{3a}$) was made on the basis of the thermodynamic consideration. Thus, treatment of the mixture of $\underline{3a}$ with sodium ethoxide in refluxing ethanol resulted in an increase in the amount of the major isomer [δ 2.23 (s, SMe)] at the expense of the minor one [δ 2.26 (s, SMe)] (87:13 by $^1\text{H-NMR}$). Earlier studies on the cyclizations of 1-substituted hex-5-enyl radicals have revealed that relatively stabilized radicals afford predominantly the <u>trans</u> products, while less stabilized radicals give <u>cis</u>-rich products. This is the case for the cyclization of $\underline{2}$. The cyclizations of the chlorides $(\underline{1b})$ and $(\underline{1c})$ also gave the lactams $(\underline{3b})$ (80%) and $(\underline{3c})$ (90%) along with the reduction products $(\underline{4b})$ (12%) and $(\underline{4c})$ (8%), respectively. 9) The 5-exo cyclization of the N-methallyl system $(\underline{9})$ proceeded similarly, giving the pyrrolidinone $(\underline{10})$ (68%) together with the reduction product $(\underline{11})$ (15%). None of the 6-endo cyclization product was detected in the reaction mixture. In some cases, internal olefin substitution leads to enhanced endo cyclization for steric reason. The present example is a rare case of the exclusive formation of the exo-cyclization product. $(\underline{11})$ MeN SMe $$n$$ -Bu₃SnH MeN Me Me Me Me Me Me Me $\frac{9}{11}$ Scheme 2. Finally, we applied this method to the synthesis of a pyrrolizidine ring system. Thus, treatment of the chloride ($\underline{14}$), which was prepared from \underline{L} -prolinol ($\underline{12}$) as outlined in Scheme 3, with \underline{n} -Bu $_3$ SnH and AIBN gave the hexahydro-3 \underline{H} -pyrrolizin-3-one ($\underline{15}$) in 60% yield together with the reduction product ($\underline{13}$) (24%). The lactam ($\underline{15}$) was shown to be a mixture containing two or more diastereoisomers by 1 H-NMR spectroscopy. Desulfurization of the compound ($\underline{15}$) with Raney nickel afforded, in 80% yield, the 1α -methyl-lactam ($\underline{16}$) [δ 1.16 (d, J=6.6 Hz, Me)], whose 1 H-NMR spectrum (300 MHz) showed it to contain a trace amount ($\langle 5 \rangle$) of the corresponding 1β -methyl isomer ($\underline{17}$) [δ 0.98 (d, J=7 Hz, Me)]. Chromatographic separation of these isomers and their reduction leading to (\pm)-pseudoheliotridane (\pm) and (\pm)-heliotridane (\pm), respectively, have been described in the literature. Scheme 3. i, $$C1C0_2Et$$, 4 M NaOH (91%); ii, DMSO, (COC1)₂, Et_3N , CH_2Cl_2 , -60 °C (90%); iii, Ph_3PMe Br⁻, $NaCH_2S(0)Me$, DMSO (83%); iv, KOH, $NH_2NH_2 \cdot H_2O$, (CH_2OH)₂, reflux; v, MeSCH₂COCl, Et_3N , Et_2O (iv and v, total 60%); vi, NCS, $CHCl_3$ (quant.); vii, $n-Bu_3SnH$, AIBN, C_6H_6 , reflux; viii, Raney Ni (W-2), $EtOH$, reflux. 798 Chemistry Letters, 1987 ## References Reviews: M. Julia, Acc. Chem. Res., 4, 386 (1971); D. J. Hart, Science (Washington, D. C.), 223, 883 (1984); B. Giese, Angew. Chem., Int. Ed. Engl., 24, 553 (1985). - 2) Y. Ueno, K. Chino, M. Watanabe, O. Moriya, and M. Okawara, J. Am. Chem. Soc., 104, 5564 (1982); M. Okabe and M. Tada, J. Org. Chem., 47, 5382 (1982); M. D. Bachi, F. Frolow, and C. Hoornaert, ibid., 48, 1841 (1983); D. J. Hart and Y.-M. Tsai, J. Am. Chem. Soc., 106, 8209 (1984); G. Stork and P. M. Sher, ibid., 108, 303 (1986); D. P. Curran and S.-C. Kuo, ibid., 108, 1106 (1986); N. A. Porter, D. R. Magnin, and B. T. Wright, ibid., 108, 2787 (1986). - 3) D. H. R. Barton, D. L. J. Clive, P. D. Magnus, and G. Smith, J. Chem. Soc., C, 1971, 2193. - 4) The chlorides ($\underline{1}$) were prepared by acylation of the corresponding allylamines with α -(methylthio)acetyl chloride and Et $_3$ N in diethyl ether followed by treatment of the resultant amides ($\underline{4}$) with $\underline{\text{N}}$ -chlorosuccinimide (NCS) in CCl $_4$. - 5) IR (CCl₄): 1690 cm^{-1} , $^{1}\text{H-NMR}$ (CDCl₃, 300 MHz) δ : 1.13 (3H, d, J=6.7 Hz, CMe), 2.01 (1H, dd, J=16.0, 6.4 Hz, one of COCH₂), 2.35-2.54 (1H, m, CHMe), 2.55 (1H, dd, J=16.0, 8.6 Hz, one of COCH₂), 2.83 (3H, s, NMe), 2.96 (1H, dd, J=9.6, 5.9 Hz, one of NCH₂), 3.49 (1H, dd, J=9.6, 7.7 Hz, one of NCH₂). This compound was identical with that obtained by desulfurization (Raney Ni) of 3a. - 6) H. G. Viehe, R. Merényi, L. Stella, and Z. Janousek, Angew. Chem., Int. Ed. Engl., <u>18</u>, 917 (1979). - 7) For analogous isomerizations of 3-methylthio-4-substituted pyrrolidin-2-ones, see H. Ishibashi, M. Ikeda, H. Maeda, K. Ishiyama, M. Yoshida, S. Akai, and Y. Tamura, J. Chem. Soc., Perkin Trans. 1, in press. - 8) A. L. J. Beckwith, I. Blair, and G. Phillipou, J. Am. Chem. Soc., <u>96</u>, 1613 (1974). - 9) Metal-catalyzed cyclization of \underline{N} -allyl trichloroacetamides giving γ -butyro-lactams was reported, H. Nagashima, K. Ara, H. Wakamatsu, and K. Itoh, J. Chem. Soc., Chem. Commun., $\underline{1985}$, 518. - 10) A. L. J. Beckwith, Tetrahedron, 37, 3073 (1981). - 11) A. Padwa, H. Nimmesgern, and G. S. K. Wong, J. Org. Chem., <u>50</u>, 5620 (1985). - 12) M. Mori, N. Kanda, I. Oda, and Y. Ban, Tetrahedron, $\underline{41}$, 5465 (1985). (Received January 24, 1987)